

INSTANCE DE DIALOGUE SUR LES RISQUES

Métropole de Rouen Normandie

RESTITUTION PROJET COP HERL

M. Fournier, 12 mars 2025

Coordination

Communication
Diffusion des

livrables

1/OBJECTIFS ET ATTENDUS

Organisation et phasage

17 laboratoires, + de 100 personnels

Attendus:

- -Propagation du panache de fumée
- -Imprégnation des cheveux en HAP et métaux lourds
- -Identification de marqueurs spécifiques de l'incendie
- -Caractérisation du bruit de fond et différenciation des marqueurs spécifiques
- -Imprégnation environnementale
- -Évaluation de la toxicité
- Évaluation de la virulence bactérienne après exposition aux fumées
- -Améliorer de la gestion de crise et développement d'outils adaptés
- -Stratégies d'adaptation et de résilience des acteurs
- -Impact de l'incendie dans la trajectoire de développement de la Métropole

Incendie des usines Lubrizol et Normandie Logistique : COnséquences Potentielles pour l'Homme et l'Environnement, perception et RésiLience

WP1 : Caractérisation de l'incendie

WP1.1 : analyse de la combustion, des suies et rabattement de l'incendie

WP1.2 : analyse non-ciblée et multi-résidus de la contamination chimique émise par voie atmosphérique

produits
 marqueurs de
 l'incendie
 modélisation

du panache BRGM LEESU UR UPEC

WP2: Contamination des matrices environnementales

WP2.1 : Caractérisation de l'exposition aux contaminants des Hommes et de l'environnement

WP2.2 : bruit de fond et transferts des contaminants dans l'environnement

- Imprégnation de l' environnement __- rémanence

COBRA UMR 6014 ECODIV URA 1293 M2C UMR 6143 SMS EA3233 BRGM LEESU UR UPEC

COBRA UMR 6014 CORIA UMR 6614

GPM UMR 6634

SMS EA3233

WP3 : Santé et toxicité des produits de l'incendie

WP3.1 : dangerosité des substances émises par l'incendie WP3.2 : risque sanitaire : étude sur la virulence bactérienne et l'exposition à des toxiques

- toxicité et virulence bactérienne - Imprégnation

des populations

CRPPE CHU Rouen ABTE UR 4651 CBSA UR 4312

WP4 : Perception des risques et accidents, Gestion de crise

WP4.1 : le temps court de la crise WP4.2 : les enjeux du moyen terme, la recherche de résilience à l'échelle territoriale et les stratégies d'adaptation - BDD enquête

gestion des résiliences

- impact sociétal CIRNEF EA 7454, CRFDP UR 7475, DYSOLAB EA 7476, IDEES UMR 6266, NIMEC EA969, LASTA

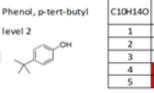
SPATIO-TEMPORELLE

2/METHODOLOGIE

EVENTUELLE

INTERCOMPARAISON DES BASES DE DONNEES DES SIGNAUX SPECTRAUX CHIMIQUES

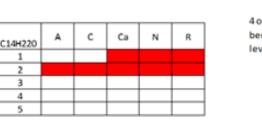
CONSITUTION D'UNE BASE DE DONNEES MOLECULAIRES CONSITUTION D'UNE BASE DE DONNEES MOLECULAIRES A PARTIR DES ECHANTILLONS PRIMAIRES PRELEVES LORS A PARTIR DES ECHANTILLONS SECONDAIRES PRELEVES DE L'INCENDIE + FEUX SIMULES D'HUILES + FICHES DANS L'ENVIRONNEMENT APRES L'INCENDIE (sols, eaux superficielles et souterraines, MES, sédiments) TECHNIQUES DES COMPOSES LUBRIZOL Analyses croisées **10.630 SIGNAUX POTENTIELS** + 6.000 SIGNAUX POTENTIELS/ECHANTILLON ciblées et non-ciblées Intercomparaison des BDD Suppression du bruit de fond urbain Suppression des molécules ubiquistes IDENTIFICATION DE 30 MARQUEURS ATTRIBUABLES A L'INCENDIE ET RETROUVES DANS L'ENVIRONNEMENT OBSERVATION DE LEUR DYNAMIQUE RECHERCHE DE LEUR TOXICITE

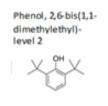

3/IMPREGNATION ENVIRON.

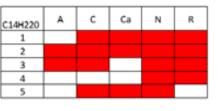
LES MARQUEURS DE L'INCENDIE

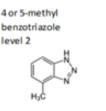
- ✓ **5 campagnes sur 5 rivières** (3 surfaces: Cailly, Robec-Aubette, Andelle / 2 souterraines Crevon, Fontaine Nourrice)
- ✓ 8 sols (Préaux, Quincampoix, Fontaine sous Préaux, Isneauville, Rouen), 1 carotte sédimentaire (darse aux bois)
- ✓ EAUX : 8 marqueurs en phase particulaire et 12 en phase dissoute
- 4 types de dissémination spatio-temporelle : disparu, apparu, baisse, restitution selon pluie
 - Cailly, Robec-Aubette plus impactés

- 19 molécules aux effets irritants (Ir)
- 2 molécules aux effets narcotiques (Na)
- 2 molécules cancérogènes ou mutagènes (Ca-Mu)
- 4 molécules Perturbateurs endocriniens et/ou Reprotoxiques (Pe-Re)
- 6 molécules dangereuses pour les organismes aquatiques (To)


- ✓ SOLS: 7 marqueurs
 - Sols de Préaux plus impactés
 - Comparaison avant-après sur Petite Bouverie :
 Augmentations significatives après l'incendie
- ✓ SEDIMENTS: 8 marqueurs
 - Comparaison avant-pendant-après l'incendie
 - Distinction bruit de fond-pic de l'incendiediminution et diffusion




Phenol, 2,5-bis(1,1-


dimethylethyl)-

C10H14O	А	С	Ca	N	R
1					
2					
3					
4					
5					

C13H9NS	А	с	Ca	N	R
1					
2					
3					
4					
5					

3/IMPREGNATION ENVIRON.

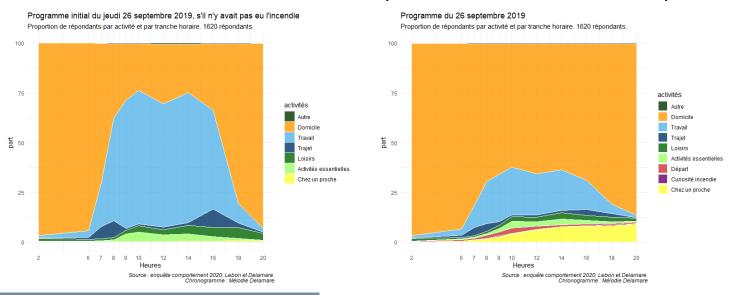
SYNTHESE SUR LES MARQUEURS

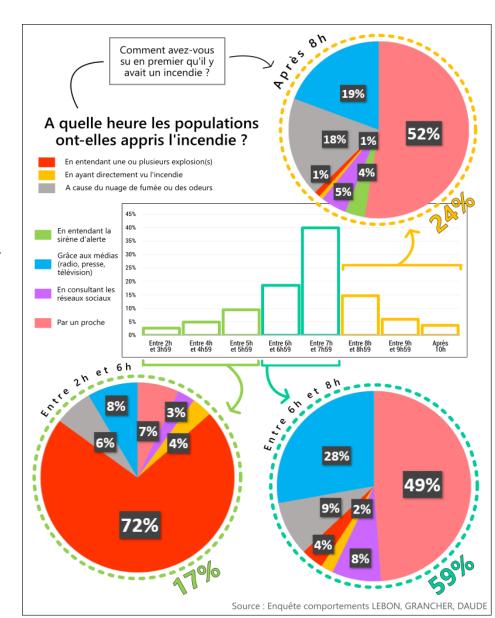
ſ)ánata	nalidas					Cádi	1				Dénote	solides						1				Dáncta	solides					
	No.14	044	Air		et lixi	solides viats	Rejeu	eau	<u>IX</u>	sols	Sédi- ments		Molécule marqueur	Structure	Air	et lix	iviats	Rejeu	<u>eau</u>	<u>IX</u>	sols	Sédi-		Molécule marqueur	Structure	Air		solides iviats	Rejeu	<u>eau</u>	<u>x</u>	sols	Sédi-
	Molécule marqueur	Structure	(gaz	<u>z</u>) s	uies	ASL	du feu	Phase dissoute	MES				1		(gaz)	suies	ASL	du feu	Phase dissoute	MES		ments		molecule marqueur	otractare	(gaz)	suies	ASL	du feu	Phase dissoute	MES	3013	ments
2 Ir	Benzothiazole 2 phenyl C13H9NS		× (2	2)	× (4)		× (2)	× (3)	× (3)		× (4)	2 CM	Diphenylamine C12H11N	00		x		x	× (2)			× (2)	2 PR	4-tbutyl phénol C10H14O	но				×	× (2)		× (4)	× (2)
1	di-tButyldisulfide	H ₃ C CH ₃ S CC CH ₃	H ₃ × (1)			x	× (4)				1 Ir	Pyrazine C4H4N2	(N)	×								2 Ir	Phenol, 2,6-bis(1,1- dimethylethyl) C14H22O	X\$\		x	× (4)	x	× (2)			× (2)
1 Ir	2-acetyl thiophene C6H6OS	S CH ₃	x				x					PR	Lioxane C3H6O3 Benzoic acid 4-		×								2 Ir	Phenol, 2,5-bis(1,1- dimethylethyl) C14H22O	HO			×		× (2)			
1	2-propionylthiophene C7H8OS	-	×				x					2 Ir	ethoxy- ethyl ester C11H14O3 Dithiophosphate de	s.	× (2)	× (4)			× (2)				3 PR	2,6-di-tbutyl-p-cresol (Hydroxytoluene butylated	H ₃ C CH ₃				× (4)	× (3)	× (4)	× (4)	
1	2-2'bithiophene C8H6S2	S S	x				x					4	zinc (ZDTP) et dérivés C14H32O4P2S4Zn	RO S TO OR			× (4)							C15H24O Phenol, dodecyl-,	H ₃ C CH ₃								
1	3-3' bithiophene C8H6S2		×				x					4 To	O.O.O-triphenyl phosphorothioate			x	×(4)			× (4)			_	branched C18H30O Phenolheptyl								× (4)	
Ir 3	2,4- dimethylthiophene		×								× (3)	1	C18H15O3PS N, N'-Methylene-Bis-										lr 4		НО					× (4		× (4)	
Ir 3	C6H8S Trisulfide, bis(1,1-dimethylethyl) C8H18S3	\$ 5	x		x						× (3)	CM	Morpholine			× (1)			× (4)	× (4)	× (4)		lr	Nonylphenol and derivatives C15H24O	H ₃ C CH ₃ CH ₃			x		× (4)	× (4)	× (4)	× (4)
1	Thieno[3,2,b]thiophe ne	S S	x				x					4 ?	Morpholides C20H39NO2 ou C22H43NO2	Ŷ.		x					× (4)		4 IR	Nonylphenol branched ethoxylated	HO JOS CHO						× (4)		× (4)
2	C6H4S2 2-butylthiophène C8H12S		×		x		x					4 Ir	Morpholine derivatives dont C11H17NO2			x				× (4)			lr	1-Phenyl-1-decanol C16H26O				× (4)			× (4)		
3	3,4-diéthylthiophène C8H12S	s	×		x		x						4- Methylbenzotriazole C7H7N3	HN N CH ₃				x	× (2)					. !		ı I	ı		ı	1			ı I

SYNTHESE SUR LES MOLECULES CIBLEES D'INTERET (HAP, PCB, dioxines, furanes, métaux)

EAUX, MES, SOLS → pas de pollution, (< niveaux réglementaires), Zn à surveiller

SEDIMENTS de la darse aux bois → pollution supérieure au niveau S1 aux HAP, PCB, Cd, Cu, Pb, Zn très forte contamination aux PFAS > à Lyon

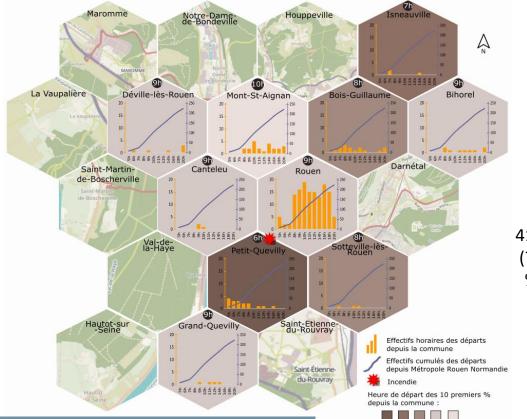




4/REP. SOC., GESTION CRISE

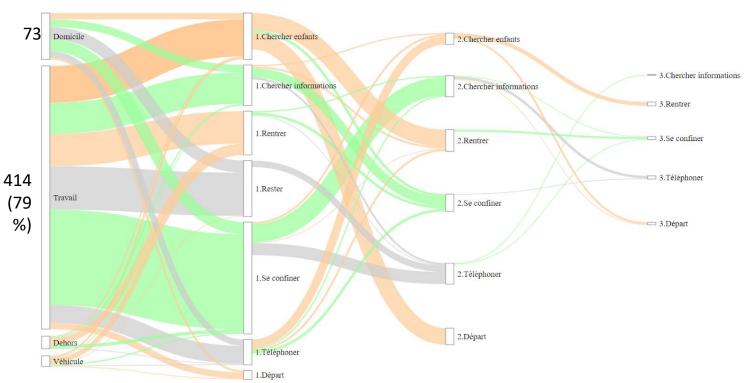
COMPORTEMENT DES POPULATIONS LORS DE L'INCENDIE

- 1. Ce n'est pas la communication des acteurs publics (services de l'Etat ou collectivités) qui informe en premier l'essentiel de la population
- 2. La part des réseaux sociaux comme premiers canaux d'information est relativement faible
- 3. La mise en service de la sirène a, au final, informé/alerté peu de personnes
- 4. Sentiment de mise sous silence suite au décès de J. Chirac
- 5. Tweet portant plus sur la gestion défaillante que sur la perception du nuage
- 6. Défiance ressentie par les populations envers le gvt et préf, dont les mots sur la non toxicité de l'incendie et le manque de communication n'ont pas rassuré



4/REP. SOC., GESTION CRISE

COMPORTEMENT DES POPULATIONS LORS DE L'INCENDIE


A) Départ des populations

- 1. Mise à l'abri globalement respectée
- 2. Absence de connaissance et de maitrise des consignes de sécurité
- 3. Grande incidence de l'heure de survenue

B) Scénario pour un incendie à 10h30

- 1. Sous-capacité d'accueil pour le confinement
- 2. Des comportements contraires aux consignes
- 3. Engorgement des axes de transport

PERCEPTION DES RISQUES DANS LA JEUNESSE

<u>1^{er} temps=Expression des émotions à la suite de l'incendie :</u>

- sentiments de peur et d'inquiétude dominants juste après
- colère et inquiétude forte chez 1/3 des jeunes 9 mois après
- peur prédominante sous ou hors nuage

<u>2^{ème} temps=Euphémisation des risques :</u>

- Déni : indifférence des jeunes à l'égard des risques industriels
- Déréalisation : mise à distance physique et psychique
- Atténuation de la dissonance cognitive : danger minimisé avec un retour aux comportements antérieurs à l'incendie

3ème temps=Perceptions sensorielles du risque :

- Prédominance des réponses sensorielles
- L'olfactif participe à la réactivation du souvenir de l'incendie

 l'odeur renvoie au contexte dans lequel elles ont été senties

4/REP. SOC., GESTION CRISE

REACTION DES AGENTS EN SITUATION DE GESTION

- Incertitude et traumatisme :
- Caractère traumatique
 hypermnésie caractéristique
- Absence d'informations et consignes → sentiment d'abandon et de détresse dans un système vécu comme hiérarchisé=recours à des réseaux alternatifs extra-pro. (entourage avec compétence tech.)=postures différenciées

5/CONCLUSION

MARQUEURS CHIMIQUES ET IMPREGNATION ENVIRONNEMENTALE

Pas de pollution aux HAP, PCB, dioxines, furanes, métaux dans les eaux et les sols
Pollution de niveaux S1 aux HAP, PCB, Cd, Cu, Pb, Zn des sédiments de la darse, très forte contamination aux PFAS (>Lyon)
30 marqueurs de l'incendie : air=14, suies=11, eau en phase dissoute=12, eau en phase particulaire=8, sédiment=8, sols=7
4 dynamiques de restitution des marqueurs: déjà disparu, en diminution, apparu, restitution selon contexte pluvieux

TOXICOLOGIE DES MARQUEURS

☐ La plupart sont irritants pour la peau, les yeux et les voies respiratoire avec parfois effets narcotiques
Toux, gêne respiratoire, irritation, mal de gorge, nausées, vomissements, somnolence et vertiges
□ 8 marqueurs sont cancérogènes/mutagènes, perturbateurs endocriniens et/ou reprotoxiques, ou toxiques pour l'env.

REPONSES SOCIETALES ET GESTION DE CRISE

Traumatisme généralisé avec hypermnésie et sidération mêlées d'un sentiment d'abandon et de défiance
Méconnaissance des consignes de sécurité et absence de réflexes normés
Incapacité à répondre au besoin de confinement en centre-ville si accident majeur en journée (accueil ERP insuffisant)
Absence de savoir officiel diffusé de façon homogène → report sur l'expérience personnelle=postures différenciées
Volonté d'action publique : prévention, sanction-désincitation, préparation face à un nouvel accident
Souhait de transformation sociale : adaptation des comportements aux risques, culture du risque, renaturation de la ville

6/RECOMMANDATION

CARACTERISATION DU RISQUE LORS D'UN ACCIDENT

Prélèvements conservatoires pour analyses rétrospectives ciblées et non-ciblées avec bancarisation Accès aux échantillons natifs
COMMUNICATION DE CRISE Informer en continu les populations en intégrant les incertitudes et les évolutions de la situation Éviter la multiplication des émetteurs « officiels » et les messages potentiellement contradictoires Informer tout au long de l'année sur les risques (de toute catégorie) et les évènements (même « petits ») Identifier et rendre accessible les zones de confinements pour les populations en cas d'alerte Sensibiliser et préparer les acteurs à une stratégie d'évacuation massive de la population en cas de danger
SUIVI DES MARQUEURS DANS L'ENVIRONNEMENT
30 marqueurs ont été identifiés : 8 présentent des risques + morpholines et morpholide Préconisation de quantification de ces marqueurs avec leur intégration dans les plans de surveillance DREAL, AESN, ARS Continuité du suivi, démantèlement des stations de mesures ? Contrôle de la qualité des eaux de la Darse aux bois, Pollution S1 des sédiments → curage et mise en décharge spécifique